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Some examples of higher rank manifolds of nonnegative curvature 

R. J. SPATZIER* AND M. STRAKE~ 

1. Introduction 

Let M be a complete Riemannian manifold. We recall the notion of  rank from 
[2] (cf. also [3]). It measures the amount of flatness in a manifold. 

DEFINITION 1.1. If  7 is a (complete) geodesic in M we define the rank of 
7, rk 7, as the dimension of the space of parallel Jacobi fields along 7. Let the rank 
of M, rk M, be the minimum of the ranks of all geodesics in M. Also, we call a 
geodesic 7 regular if rk 7 = rk M. 

Recall that a metric on M is locally irreducible if the universal cover of M does 
not split isometrically as a product. In nonpositive (sectional) curvature and higher 
rank, all locally irreducible finite volume manifolds (with bounded curvature) are 
locally symmetric spaces [1], [8], [12]. This result uses the special properties of 
nonpositive curvature in an essential way. In fact, Heintze found examples of 
normally homogeneous nonsymmetric spaces of nonnegative curvature and higher 
rank [16]. In this note, we will obtain more examples of  higher rank and nonnega- 
rive curvature with some new features. Indeed, the whole point of this paper is to 
show that higher rank metrics in nonnegative curvature can be very complicated. 

One should compare our situation with the pinching theorems. There there is a 
duality between positive and negative curvature. In fact, if M is any rank 1 compact 
locally symmetric space with nonconstant curvature then any other 1/4-pinched 
metric on M must be symmetric. For positive curvature, this is a consequence of 
Berger's famous rigidity theorem [ I0]. For  negative curvature, this was proved by 
Hamenstfidt [ 15]. Notice though that there really is no theorem dual to the sphere 
theorem in negative curvature, due to the Gromov-Thurs ton  examples of  compact 
manifolds with arbitrarily pinched sectional curvatures which are not homotopy 
equivalent to a space with constant curvature. Similarly, our examples show that 
duality fails for the higher-rank rigidity theorems. 
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The construction of  our examples is based on a simple lower estimate of  the 
rank of certain submersion metrics. 

T H E O R E M  1.2. Suppose M is a compact Riemannian manifold and H a compact 

group of  isometries o f  M which acts on M with only principal orbits. Let 
d e f  

rc : M --* B = M / H  be the associated Riemannian submersion. Then rk B > rk M - 

dim F where F is the fiber of  the submersion. 

As Remark 2.4 shows, one cannot in general improve the estimate of  the rank 
by rk M - rk F. Also note that the compactness of  M is essential. For  a noncom- 
pact counterexample see Example 2.2. We do not know whether the theorem holds 
true for a general submersion with compact  total space. I f  the submersion has 
totally geodesic fibers it follows quite easily. Also one can always estimate the rank 
of  geodesics in the base space that are covered by a closed horizontal geodesic. 

The rank of  a manifold really is an infinitesimal measure of  the amount  of  
flatness in a manifold. More globally, let us make the 

D E F I N I T I O N  1.3. A k-flat F in a Riemannian manifold is a totally geodesic 
isometric immersion of  R k into M. 

One can then ask whether every geodesic lies in a k-flat. Let us call the largest 
such k the global rank of M. Of  course, the rank of  M is always at least as big as 
the global rank. Whether a converse holds, that is whether one can integrate the 
parallel Jacobi fields to fiats is only known in nonpositive curvature [2]. In all of  
our examples however, the two ranks are in fact equal (cf. Corollary 2.5). 

In Section 3 we use Theorem 1.2 to determine the rank of various standard 
submersion metrics. In particular, we see in 3.3.1 that higher-rank metrics of  
nonnegative curvature are not infinitesimally rigid, even for the standard symmetric 

spaces. 

C O R O L L A R Y  1.4. Let M be a rank k globally symmetric space o f  the compact 

type with the standard symmetric metric go. Then there is a 1-parameter variation of  

metrics gt o f  go o f  constant (global) rank k and nonnegative curvature such that none 

o f  the metrics gt for t > 0 is symmetric. 

Let M be a manifold of global rank at least 2. One can study the "intersection 

pattern" of  the flats at a point p ~ M. More precisely, choose a sphere S centered 
at p of  radius less than the injectivity radius of  p. Since the global rank is at least 
2, the intersections of  the k-flats through p with S define a (singular) foliation of  S. 

Call a point x e S regular ~f the geodesic through p and x is regular. We define Wef t  
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chambers as the connected components of  the regular points of  the leaves of  this 
foliation. Note that the Weyl chambers are convex subsets of  S (possibly empty). 
Call this tesselation of the regular points of  S by the Weyl chambers the building 
germ zip of the metric at p. Note that Ap is independent of  S. The building germ is 
a cell complex where the cells are convex subsets of  S. 

We do not know how complicated these building germs can be. When M is a 
symmetric space, the building germ at any point is just a spherical building in the 
sense of  Tits [23]. This follows from the fact that fiats in M correspond to fiats in 
the symmetric space of  noncompact  type dual to M [17]. For the deformations in 
Corollary 1.4 the building germs are "combinatorically isomorphic" to those of  the 
symmetric space (in the sense that there is a bijection of the fiats through a point 
p in the deformation to the fiats through p in the symmetric space that preserves 

intersections). 
Thus not even the full intersection structure of  the fiats determines the metric. 

However, we can define a finer invariant, the Tits metric dr on S. I f  x and y are two 
points on S, let dr(x, y) be the length (in the round metric on S) of  the shortest 
path connecting x to y that is piecewise contained in a k-fiat through p. I f  there is 
no such path, we set dr(x, y) = ~ .  It is easy to see that the Tits metric is finite in 
all of our examples. Note that dT makes the building germ into a metric space. We 
will see that the building germs of  the deformations in Corollary 1.4 are not 
isometric to that of  the symmetric space. We do not know whether the Tits metric 

determines the metric in general. 
Let us call a manifold strongly inhomogeneous if it does not have the homotopy 

type of a compact homogeneous space. Eschenburg constructed strongly inhomoge- 
neous compact 7-manifolds of  positive curvature [13]. In Section 4 we use his 

examples to show 

T H E O R E M  1.5. There are strongly inhomogeneous compact 9-manifolds with 
locally irreducible metrics of nonnegative curvature and (global) rank 2. 

In fact, these manifolds are 2-sphere bundles over the Eschenburg examples. It 
is much easier to find inhomogeneous metrics of higher rank and nonnegative 
curvature. In fact, one can construct such metrics on SU(3) x sl S 2, starting from 

an S~-invariant metric on S 2. 
Finally, in Section 5, we generalize Berger's theorem on the nonexistence of 

variations positive of  first order of  the product metric on S 2 x S 2 to metrics of  

nonnegative curvature with a 2-flat. 
We are grateful to T. Farrell for showing us Proposition 4.2. Our proof  is a 

variation on his argument. Also we would like to thank C. H. Sah for several 

helpful conversations. 
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2. The rank of submersion metrics 

Here we discuss Theorem 1.2 and a variant of it. We will adopt the notations of  
[5] and [20]. 

First we prove Theorem 1.2. Recall that M is a compact manifold and H a 
closed group of isometries of  M with only principal orbits. Give B ~ f M / H  the 
submersion metric induced by rt : M ~ B. Consider a geodesic ~ in B with initial 
vector ~. Since n is a Riemannian submersion we can define diffeomorphisms k'  
between the fibres Fo=n- l ( f f (0 ) )  and F, =n- l (~ ( t ) )  in the following way: Let 
k'(p)~fvp(t),  where Vp is the (unique) horizontal lift of  ~ which starts at p e Fo. 

Fix p e F0 and consider a vertical curve c through p with initial vector v = ?(0). 
The diffeomorphism k t gives rise to a geodesic variation ~t of 7p: 

ct(s, t) ~f k'(c(s)). 

The corresponding Jacobi field Jv(t) along yp with J~(0) = v is vertical and 

k , v  = Jr(t). (*) 

Set m..= rk M - dim F0. As rk B is always at least 1, we may assume that m 2 2. 
Then we can find ( m -  1) orthonormal parallel Jacobi fields El(t) . . . . .  Em_l(t) 
along Vp which are orthogonal to Vp and horizontal for t = 0. By Lemma 2.1 below, 
the inner product (Ei, J~ )(t) is identically zero for all v E TpFo. By ( , )  we have 
T~/,)Ft = {Jv(t) Iv ~ TpFo}. Thus every parallel field Ei is horizontal for all t ~ R. 

v de! 
Hence we get m - 1 vectorfields Ei = n ,  Ei along ~ such that 

0 = ,,~(E~ ) = ~#~ (1) 

0 = v(E~) = A~E,, (2) 

where A is the O'Neill tensor of n (cf. [20]). By [5, 9.28f, p. 241] equation (2) 
implies that R (L ,  ~ = 0. Together with (1) this shows that/~; is a parallel Jacobi 
field along i. Therefore we have rk (B) > m. 

To finish the proof  of  Theorem 1.2 we need the following generalization of  the 
Clairaut integral. 

LEMMA 2.1. Consider the Riemannian submersion ~ : M--* M/H,  where M is a 
compact Riemannian manifold and H is a closed subgroup of isometries such that all 
orbits of  the H-action on M are principal orbits. Let ~ : R--* M be a horizontal 
geodesic and E a parallel Jacobi field along ~. I f  Jr(t) = k , v  denotes the vertical 



Some examples of higher rank manifolds of nonnegative curvature 303 

Jacobi  f ie ld  along ? defined by (*) then 

def 
f~(t)  = (J~, E ) ( t )  

is constant  in t. 

Proof.  As E is parallel we get 

f ~ ( t )  = (J~ ,  E ) ( t )  

= - (R(J~,  ~)~, E ) ( t )  

= - ( R ( E ,  ~)~, Jv )( t ) .  

Since E is a parallel Jacobi field we deduce t h a t f ~  = 0. Thusf~(t)  = at + b for some 
a, b e R. Let l = dim Fo = dim H - dim Hp where l ip is the isotropy group o f  p. 

Choose a basis v~ . . . . .  v~ o f  TpFo such that vi = : ~ ( p ) ,  where J~"~ is a Killing field 
generated by the action o f  H on M. Since k '  commutes  with all elements h e H, we 

get 

k , o,~ri ( p ) = ~r, o ? ( t ) ( l < i < m - 1 ) .  

Therefore equation ( . )  yields 

Aei o ?(t) = J~i(t). 

Hence J~, is the restriction o f  a globally defined vector field on M. Since M is 

compact  we get 

IJo, I II Jci  II < + 

In particular, fv, is bounded  for all i. By ( . ) ,  f~ is bounded.  Thus a = 0 and f~ is 
constant.  [] 

E X A M P L E  2.2. Theorem 1.2 and Lemma 2.1 do not  hold in general if M is not  

compact .  As an example, consider M = S ~ x R 2 and let S ~ act diagonally on M by 

rotation. It is not  difficult to verify that the rank of  M / S  ~ is 1. 

Consider  a Riemannian submersion n : M--* B. Recall that  a k-flat in M is an 
isometric totally geodesic immersion F : R k ~ M. The next proposi t ion summarizes 

the relation between k-fiats o f  M and B. 



304 R. J. SPATZIER AND M. STRAKE 

P R O P O S I T I O N  2.3. Let rc : M ~ B be a Riemannian submersion, ? a horizontal 
def 

geodesic, ~ = ~ o ? and E a parallel Jacobi field along 7. 
. def 

1. I f  E ts horizontal for all t then ~, = n . E  is a parallel Jacobi field along ~. 
Conversely, i f  E is a parallel Jacobi field and M has nonnegative curvature then 
the same holds for the horizontal lift E of  ~ along ?. 

2. Let F be a k-flat in M. I f  F is horizontal then P~ f  tifF) is a k-flat in B. 
Conversely, suppose M has nonnegative curvature. Then, given a k-flat ~ in B 

there is a (uniquely determined) horizontal k-flat F through every point 
p ~ rc - z (p)  with tifF) = F. 

Proof. The first claim is a straightforward application of O'Neill 's formulas (cf. 
[20] and the p roof  of Theorem 1.2). Indeed, we have 

0 = <R(L ~)r ~> = <R(E, ~)~, E> + I[&EII 2. 

Since M is nonnegatively curved, this shows that (R(E,  ~)~, E )  = 0, and therefore 
R(E, ~)~ = 0. 

The second claim follows from the fact that the distribution defined by lifting 

the tangent spaces of/~ is integrable. Indeed, as above, the O'Neill tensor vanishes 
for this distribution. [] 

R E M A R K  2.4. The inequality rk M / H  > rk M - rk H does not hold in gen- 
eral: Let S 3 be the round 3-sphere. S e t  Mde--~fs 3 • S 3 X S 3 and let Hde~fs3 "~ SU(2) 

act diagonally on M. Then M / H  with the submersion metric is diffeomorphic to 
S 3 x S 3 and has rank 1, as is straightforward to show. 

We can apply Theorem 1.2 to the case where M is a compact symmetric space 

of nonnegative curvature and higher rank. Since a Riemannian submersion is 
curvature non-decreasing, we obtain manifolds B = M / H  of nonnegative curvature 
and higher rank which are in general neither symmetric nor products. We will study 
this class in the next section in more detail. The special case of  a normal 
homogeneous space B = G/H is due to E. Heintze [16]. 

C O R O L L A R Y  2.5. Let M be a compact Riemannian manifold o f  curvature 
K > 0 and H a Lie group acting freely on M by isometries. Then the space of  orbits 
B ~f  M / H  inherits a metric of non-negative curvature ~ and rk B > rk M - dim H. 

Furthermore, i f  M is a symmetric space, # a 2-plane in TB with K(6) = 0 then there 
exists a complete 2-flat 1~ such that # is tangent to ~. 

Proof. The first part o f  this corollary follows directly from Theorem 1.2. Let tr 
be a horizontal lift of # through a point p e M. Since/~(#) = 0 we obtain by [20] 
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that K(a) = 0. Since M is a symmetric space there is a 2-flat F with tr = TpF. Let x 
and y be a basis of  a and let E be the parallel field along ~x with E(0) = y, where 
~x is the geodesic with initial vector x. Then E is tangent to F and horizontal by 
Lemma 2.1. This shows that F is horizontal. By Proposition 2.3, P , = n ( F )  is the 
desired flat in B. [] 

3. S imple  appl icat ions  

3.1. Normal homogeneous spaces (E. Heintze) 

Let M = G be a compact Lie group with a biinvariant metric, H a closed 
subgroup with dim H + 2 < rk G. By Corollary 2.5, the normal homogeneous space 
B ~f G/H carries a metric of  nonnegative curvature and rk > 2. 

3.2. Biquotients 

(cf. [13, p. 496] and [14]) Let G be a compact Lie group, H a closed subgroup 
of  G x G. We denote the projection from G x G to the second factor by pr and 
assume that the metric on G is left-invariant under G and right invariant under 

pr (H). Then h = (h~, h2) �9 H acts on G by an isometry via 

h �9 g~fhlghZ I. 

I f  the metric on G has non-negative curvature (which of course holds for the 
biinvariant metric on G) and if H acts freely on G (or, more generally, if all 
isotropy groups are principal) then B = G/H with the submersion metric has 
nonnegative curvature and rk B > rk M -  dim H. As an explicit example, take 
M = SU(4) and H c SU(4) x SU(4). Let H be the circle generated by the tangent 
vector (D~, D 2 ) � 9  T~H, where the Di are the diagonal matrices with coefficients 
1, 0, - 1, 0 and 2, 2, - 4 ,  0 respectively. It is easy to check that H acts freely (of. 

[13] for the corresponding statement for SU(3)). 

3.3. Quotients of products 

(cf. [10, p. 79] and [9]) Let G be a compact Lie group, Mo a Riemannian 
manifold and H a subgroup of G which acts on Mo by isometries. Assume that G 
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M~G carries a metric right invariant under H. Then H acts isometrically on x M0 
by 

clef 
h . (g, p) = (gh- ' ,  hp). 

The action is fixed point free and the manifold B ~f M / H  = G x n Mo is an example 

of  the type described in Corollary 2.5. 

3.3.1. Deforming symmetric metrics 

Here we prove Corollary 1.4. By varying the metric on factors, we can restrict 
ourselves to the irreducible case. Also, it clearly suffices to consider the case when 
the rank is bigger than 1. Thus we let M be an irreducible globally symmetric space 
of  the compact  type with rank k > 1 with the standard symmetric metric go. In the 
construction above, let G = H = S '  be a subgroup of the isometries of  M. Then 
B = S '  x s, M is diffeomorphic to M and the rank of the submersion is at least k 
(we will see below that it is actually k). I f  we multiply the given metric on S l by #2 
then the metric on (B, g~) = ((/~2S') x st M)  converges to the initial metric on M as 
/z --, oo. Setting t = 1//~ 2, we obtain a deformation t --* g, of the symmetric metric go 
on M in the category of  higher rank manifolds of  non-negative curvature. I f  the 
S~-action on M is fixed point free, then this deformation is exactly of  the type 
described in [5, p. 252]. Fix some t = l//z2> 0 and suppose from now on that 

H = S '  acts on M by translations. We will now study the structure of  the flats in 
(M, g,). We refer to the Introduction for the definition of building germs and the 
Tits metrics on them. 

Let ((d/dx), k) be the infinitesimal generator of  the action of  S '  on S ~ x M. By 
a simple calculation (cf. also Proposition 2.3) we obtain the 

L E M M A  3.1. Let p ~ M, and let F be a k-flat through p in the standard metric. 
Then the image P of TpF in S' x M under the map 

f~--~ exp(,a,) ( - f  " pc(p) dx ] 

is horizontal for any s ~ S' .  Conversely, every horizontal k-flat is of  this form. 

C O R O L L A R Y  3.2. The building germ A' of  S 1 x s, M at any point is (combina- 
torially) isomorphic with the Tits building A of M. 

Proof. The map from the lemma gives the desired isomorphism. [] 
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C O R O L L A R Y  3.3. The Tits metrics on d and A' are not isometric. 

Proof. Fix a point p e M. Since M is a symmetric space, the building germ A 
has some additional structure, namely A is simplicial. We call the unit vectors 
corresponding to vertices in A the maximally singular vectors. The idea of  the proof  
is that some (k - 1)-simplex in A becomes "bigger" in A' with respect to the Tits 
metrics. 

To find this (k - 1)-simplex we first claim that there is a maximally singular unit 
vector w based at p with w _L K(p). In fact, the vertices of  A decompose into finitely 
many connected sets (in the Hausdorff  topology on S) such that each such set 
contains exactly one vertex from each simplex. This follows from the description of 
the building of the dual symmetric space of the noncompact type by parabolic 
subgroups [23]. The set a vertex belongs to is called the type of the vertex. Now 
our claim follows easily. In fact, let wt and w2 be vertices of  the same type in 
( k -  1)-simplices that x(p) and - r ( p )  belong to. Since the diameter of  any 
(k - 1)-simplex in A is at most  n/2, w~ and w2 lie in the northern and southern 
hemisphere defined by x(p) respectively. Connect wt to w2 by a path in the vertices 
of  the same type as w~. The intersection point of  this path with the equator defines 
a maximally singular vector w perpendicular to r,(p). 

We may also assume that w is tangent to a flat F which is not perpendicular to 
x(p). Indeed, let w' be a unit vector not perpendicular to x(p). Then w and w' are 
connected by a finite chain of  flats. The first flat (starting from w) that is not 
orthogonal to r(p) contains a maximally singular vector as desired. 

For  a unit vector v tangent to F, let t3 denote the unit vector tangent to S t x M 
in direction of  ( - v  �9 x(p)(d/dx), v). An easy calculation shows that 

W ' V  

Let c~ be a (k - 1)-simplex containing w. Since F is not perpendicular to x(p), 
qr is not perpendicular to x(p). Let {v~ . . . . .  vt } be the vertices of  qr which are not 
orthogonal to x(p), and let {w 0 = w, Wl . . . . .  Wk-l-~} be the remaining vertices. 
Since M and therefore its Tits building are irreducible, not all vi can be orthogonal 
to all wj. Thus there are vertices v and w' of  q( such that w' is orthogonal to K(p) 

and v is neither orthogonal to x(p) nor to w'. 
By the above calculation ( ,) ,  the distances between w' and the other vertices of  

orthogonal to x(p) are not decreased and the distances between w' and the 
vertices not orthogonal to x(p) definitely become bigger. This shows that there 
cannot be a type preserving isometry between the building germs of  M and 

S t x s, M. Also note that this finishes the proof  in rank 2. 
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Finally, let ~b be any isometry between the building germs. Identifying the 
building germs combinatorially as in Corollary 3.2, ~b defines a combinatorial 
isomorphism. In fact, it suffices to see that ~b maps regular points to regular points. 
Regular points in the building germ of  M are characterized by the property that 
they have neighborhoods that are balls. Since the combinatorial isomorphism from 
the last corollary is continuous the same characterization holds for A '. An isometry, 
of course, preserves this property. 

Identifying A and A' combinatorially as in Corollary 3.2, tk defines a combina- 
torial automorphism of A. Then a finite power q~t of ~b is type-preserving [23, 
Corollary 5.10]. Now interpret tk I-  ' as an isometry of  A. Then ~ o q~t- ~ defines a 
type-preserving isometry between the building germs which is impossible. [] 

Proof of  Corollary 1.4. The argument for the last corollary can also be used to 
show that the metrics g, are not symmetric. Let f be a maximally singular vector 
orthogonal to x(p). Since the building is irreducible, there is a maximally singular 
vector f '  in the star o f f  that is not orthogonal to f.  Let T be the set of  maximally 
singular vectors of  the same type as f '  in the star o f f .  Again, T is connected, and 
as above, we may assume that not every vector in T is perpendicular to x(p). Using 
the geodesic symmetry in p we see that there are vectors in T strictly to either side 
of the equator defined by x(p). Since T is connected, there are also vectors in T 
perpendicular to x(p). Using formula ( . )  from the proof  of  Corollary 3.3, we see 
that the distance between vertices of fixed type is not constant. Thus g, is not 
symmetric. [] 

This finally proves all our claims about the deformations of  the symmetric 
metrics made in the Introduction. 

4. A strongly inhomogeneous manifold of nonnegative curvature and higher rank 

In this section we will construct a compact Riemannian manifold of  nonnegative 
curvature and higher rank which topologically is not a product and which is not 
homotopy equivalent to any compact Riemannian homogeneous space. This will 
prove Theorem 1.5. 

We combine the constructions from 3.2 and 3.3: Consider G = SU(3) and let 
H = Hklpq be a closed one-parameter subgroup of  G x G as in [ 13]. The numbers k, 
l, p and q describe how H = S ~ is embedded into G x G. Choose k , / ,  p and q such 
that the action of  H on G does not have fixed points and such that (cf. [13]) 

r ,= [(k 2 + 12 + kl) - (p2 + q2 +pq)[  _ 2 mod 3. 
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Let H also act on the standard sphere S 2 by rotation. Then the space 
X~fSU(3)  x ~  S 2 has nonnegative curvature and rank at least 2. Topologically, X 
is a 2-sphere bundle over Eschenburg's strongly inhomogeneous 7-manifold 
Y~fSU(3) /H.  Metrically however we just endow SU(3) with the biinvariant metric 
unlike Eschenburg who strives for positive curvature on the biquotient Y. 

Proposition 2.5 implies that every fiat 2-plane cr (i.e. K(a) = 0) tangent to X is 
tangent to a complete 2-flat F : R2~ X. Thus the structure of  the fiat 2-planes in X 
is similar to that of  symmetric spaces or normal homogeneous spaces. However, X 
is strongly inhomogeneous, simply connected and irreducible (topologically, i.e. X 
is not a product). We will show this in the next two sections. 

4.1. Homotopy and Homology of X 

Using standard techniques from algebraic topology, we calculate the homotopy 
and integral cohomology groups of X. For simplicity, we write Hq(')  for Hq(., Z). 
Also we denote the cyclic group of order p by Zp. 

PROPOSITION 4.1. Let r be defined as above. Then 
(a) X is connected and simply connected and 

~2(X) = ~(X) = Z 2 

n4(%) = Z2 

(b) Hq(x) is isomorphic to Hq(Y) ~ Hq-2(Y). In particular, we obtain 

Hi (X)  = 0 H2(X)  = Z 2 

H3(X) = 0 H4(X) = Z ~ Z r 

Hs(X) = Z H r ( X )  = Z r 

H7(X) = Z 2 Hs(X) = 0. 

Proof. The homotopy groups can be calculated easily from the exact homotopy  
sequence of the fibration S l ~ SU(3) x S 2 ~ SU(3) • s, $2. 

As for the cohomology groups, the 2-sphere bundle S 2 -~ X -~ Y gives rise to the 

Gysin sequence 

. . .  __) H p - 3(y) & Hp(y)  ~) HP(X) ~ H p- 2(y) _ . . . . .  
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where/~ is multiplication with the Euler class e e H3(Y). In our case, e is 0 since the 
fixed points of  the S~-action on S 2 generate cross sections s : Y--*X. Thus the 
Gysin sequence breaks up into pieces of  length 3. Moreover for every ct e HP(X) we 
have a unique decomposition: 

ot = n*(oq) + an*(ot2) 

where ~l e HP(Y), ~t 2 e HP-2 (Y )  and a is an element in H2(X) such that ~b(a) = 1 
in H~  (cf. [19, p. 273]). This shows that nq(x) is isomorphic to 
Hq(y) ~ H q- 2(y). The precise formulas for the cohomology groups now follow 
from Proposition 36 of [ 13]. [] 

4.2. Irreducibility 

In this section we will show that X is irreducible. This was shown to us by 
T. Farrell. Our proof  is a variation of  his argument. 

P R O P O S I T I O N  4.2. (T. Farrell) The manifold X is topologically irreducible, 
more precisely, X is not homotopy equivalent to any product of  closed manifolds. 

We begin by reducing to a special case. 

L E M M A  4.3. Let V be a closed simply connected product manifold, 
V = M m x N n with 1 < m = dim M < n = dim N. Suppose V has the same integral 
cohomology groups as 3:. Then M is homeomorphic to S 2 and N is a closed 
7-manifold. 

Proof. Since V is simply connected and closed, we only need to show that 
m = 2. For  the same reason, we see that m r 1. Suppose that m > 2. Kiinneth's 
exact sequence 

O - - * ( H * ( M ) |  x N ) ~  ~ Tor (HP(M) ,Hq(N) ) -*O 
p + q f k + l  

implies H 3 ( M ) =  H 3 ( N ) =  0 since H 3 ( X ) =  O. Therefore, we see that m = 4 and 

n = 5 .  
Note  that H2(N) is torsion by Poincar~ duality. Hence the Kiinneth sequence 

also shows that H2(N) = 0 and H2(M) = Z 2. Since HP(M) is torsion-free for all p, 

all the torsion groups in the Kiinneth sequence vanish and we get 

Z ~ H4(N) ~ H4(X) = Z ~ Zr. 
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Therefore we have H4(N) = Z,. This gives a contradiction to the exactness of  the 
Kfinneth sequence 

0 ~ H2(M) | H ' (N)  = Z 2 | Z, --* H6(X) = Z r. [] 

View X as the sphere bundle S(r/~E~), where r/ is the complex line bundle 
associated with the principal fibration ~ : S ~ ~ SU(3) -~ Y of Eschenburg's example 
and c ~ is the trivial R-bundle over Y. 

L E M M A  4.4. The second St iefel-  Whitney class w2(r/~)et) is not O. 

Proof. Since n i ( S U ( 3 ) ) = 0  for i <  3, ~ is 3-universal [21, Theorem 19.4]. 
Therefore, there exists a map f : S 2 ~  Y such that the pullback of  ~ is the 
Hopf-bundle ( : S l ~  $ 3 ~  S 2 [21]. Let v be the complex line bundle associated to (. 

By the functoriality of  the St iefel-Whitney classes we get f*w2(r / )=  w2 ( f* q )=  
w2(v ). Since w2(v) generates H2(Cp  ~, Z2), we see that w2(r/) is a generator of  
H2(y,  Z2) = Z2. Thus w2(t/~)E l) = w2(v) v ~ O. [] 

L E M M A  4.5. The space X is not homotopy equivalent to S 2 x N for any closed 
manifoM N. 

Proof. First recall from the proof  of  Proposition 4.1(b) that every element 
ct ~ HP(X) has a unique decomposition as 

=~*(~,) +a~*(~2) 

where ~1 e HP(Y), ~X2 E H p 2(y) and a is an element in H2(X) such that ~(a) = 1 in 
H~ In particular, choose ~ e H 4 ( y )  and/3 e H2(y )  such that 

a 2 = n*(~t) + an*(~3). 

The elements ~ and/3 determine the multiplicative structure of  H*(X)  completely. 
By Theorem III  of  [ 19] we have/3 = w2(r/~ E t) mod 2. Lemma 4.4 then shows that 

/3 - 1 mod 2. 
Now suppose that X is homotopy equivalent to S 2 x N. Let a0 be the generator 

of  H2(S2)~H2(X)  and w o the generator of  H2(N)~H2(X) .  Note here that 

H2(N) = Z by Kfinneth. We have the decompositions 

O" 0 = 7z*tr I + ar[*o" 2 

w 0 = 7[*w I --t- aT$*w 2. 
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Therefore we get 

0 = aZo = n*azl + 2an*(ala2) + n*(otaz2) + an*(a~) .  

By Kiinneth we know that HZ(N) = Z and therefore H4(N) = Zr. Thus we get 

0 = rw~ = r[n*wZl + n*(otw2z) + a(n*(2wl wz) + n*(w~/t))]. 

Since H2N = Z is torsion-free, we have 

0 = 2wl w2 + wZ~fl = 2~i a2 + a~fl. 

In particular, we get w2zfl =- ~fl - 0 rood 2. As fl _= I rood 2, we see that 

w2 - a2 -= 0 mod 2. (,) 

Notice that H2(X) splits in two different ways as Z ~ Z using Kiinneth on the 

one hand and Proposition 4. l on the other hand. Viewing ~ and w~ as integers, the 

matrix which transforms one splitting to the other is given by the unimodular 

matrix 

ude=f ( a, ~2). 
\WI W2 

On the other hand, det U = 0 mod 2 by (*) which yields the final contradiction. 
[] 

4.3. Strong lnhomogeneity 

The proof  of  the next claim is a fairly routine matter. We should say however 
that our efforts were facilitated by several lucky accidents. 

PROPOSITION 4.6. The manifold X is strongly inhomogeneous. 

Proof. Step 1: Assume to the contrary that X is homotopy equivalent to some 
compact homogeneous space )? = G/H where G is a transitive subgroup of  the 
isometry group of X and H is the isotropy group of  some point x ~ X. In this first 
step, we will restrict the possibilities for G by fairly general arguments. 

Since dim )? = dim X = 9, H is a subgroup of  0(9) .  By Proposition 4.1 and the 
exact homotopy sequence for H ~ G ~ .~ ,  we obtain: 
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1. rco(G ) = no(H) 
2. the sequence 0 ~ Z 2 ~ 7r, (H) ~ rq (G) ~ 0 is exact 

3. the sequence 0 ~ It 3 ( n )  --* x 3 ( G  ) ~ Z 2 --* 0 is exact (since It4(){ ) = 

rr,(X) = Z2). 
As in [13, 4.2 and 4.3] we see that we may assume without loss of  generality 
(possibly replacing G by a finite cover) that 

�9 H and G are connected 
�9 G is compact,  semisimple and simply connected 
�9 H = H '  x T 2 where H '  is semisimple and simply connected, and T z is the 

2-torus. 
Notice that by (3), G has p + 2 simple factors if H '  has p such factors. 

Fortunately, there are further restrictions on the Lie group G. For any compact 

Lie group G define 

re(G) = min {dim M ]M is a manifold on which G acts almost effectively} 

(cf. [18, Chapter 4]). Assume that G is simply connected. Decompose 
G = G~ x - �9 - x Gs such that each Gi is either simple or Spin (4) and there is at most 
one SU(2). Thus each pair of SU(2) 's  has been combined into a Spin (4). A 

theorem due to L. N. Mann says that 

m(G) = ~ m(G,) 

(cf. [18, p. 68]). 
In our case, G is a subgroup of the isometry group of .~ (up to a finite cover). 

Therefore G acts almost effectively on )?. In particular, we see that 
re(G) < dim .~ = 9. As the number of  simple factors of  G is at least 2, we obtain the 

following list of  possible factors Go of G (cf. [18, p. 68]): 

Go rank dim Go re(Go) 

SU(2) 1 3 2 
SU(3) 2 8 4 
SU(4) 3 15 6 
Spin (5) 2 10 4 
Spin (7) 3 21 6 
Spin (8) 4 28 7 

G~2) 2 14 6 
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Step 2: Here we complete the proof  of  the proposition by checking all possible 
candidates for Go from the table above. We argue using the number p of  simple 
factors of  H ' .  We will denote the Lie algebra of  a Lie group G by G. 

Case I: p = 0 
In this case H = T 2 and G has two simple factors: G = G~ x G2. Moreover, 

we get dim G = d i m X + d i m H =  11. Thus (up to permutation) we see that 
Gi = SU(2) and G2 = SU(3). Let p~ and P2 denote the projections onto SU(2) and 
SU(3) respectively. I f  d i m p l ( T  2) = 0  or d imp2(T  2) = 0  then ,~ is a product 
manifold, in contradiction to Proposition 4.2. Thus d imp~(T 2) = 1. I f  
dim p2(T 2) = 1 then again X would be a product manifold. 

Finally, we get to the most critical case of  all, namely that dim p2(T 2) = 2. We 
may arrange the projection in such a way that one of the S l's projects to 0 in 

SU(2). Then 

~? = ( s u ( 2 )  x ( s u ( 3 ) / s ~ ) ) / s  , 

is a fiber bundle rr : ,~--*S 2 whose fiber is the homogeneous space w~fsu(3)/S  t, 
the so-called Wallach example. Let D+ and D_ be the closed northern and southern 
hemisphere in S 2 respectively. Then the triad 

(X, X+, s ) ~f(x, rc-~(D+ ), n-1(D )) 

is exact. Set A = X+ c~X_. Then the Mayer -Vie to r i s  sequence 

�9 "---, H4.~+ @H4X_ -~H4.~-oH~A ~H3g+ ~H3.~_ ---}H3.~-.-,H2A ~"" 

is exact. By [ 13], the Wallach examples have H3 W ~ H 4 W - Z s for some integer s. 
Also note that )?+, X and A are trivial bundles and that H2A = Z. Thus the 
Mayer -Vie to r i s  sequence above gives the exact sequence 

0 --..]b Z .---~ Z (~ Zs  ~ Z~ (~ Zs ---~ Z r  -.~ O. 

Note that the map ~:H3A=H3WEI~H2W@Z--*H3X+~H3,~ is 0 on 
H 2 W | Z and consists of  inclusions on H 3 W. Therefore 

O ..-) Zs  ..-4 Zs  ~ Z s ....~ Zr  .--+ O 

is exact. This implies that s = r = 2 mod 3 by our choice of  r. However, s -= 0 or 

1 mod 3 since W is a Wallach example (cf. [ 13]). 
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Case H: p = 1 

In this case, H = Hm x T 2 where HI is simple and G = G~ x G 2 • G3 with simple 
factors Gv Since re(G) < 9, we conclude from the table that at least one G~, say Gt, 
must be isomorphic to SU(2). Up to a covering, H is a subgroup of 0(9)  so that 
rk H < 4 and therefore rk H~ < 2. Thus we have the following possibilities: 

r G(2) ( l )  

J S p i n  (5) (2) 

H, = 1 S U ( 3 )  (3) 

L S U ( 2 )  (4) 

Let us first make the 

OBSERVATION 4.7. Suppose that (in addition to G~) G2 is isomorphic 
with SU(2) and that H__21 projects trivially into G~ +G2.  Then n4(.~ ) contains 
n4SU(2) ~) g4SU(2) -- Z2 ~9 Z2. In particular, )? is not homotopy equivalent with X 

as n4X = Z2. 

Now we will exclude all the possibilities for HI: 
H I = G(2): From the table we find that G 2 = S U ( 3 )  and G 3 = G(2 ) ( u p  t o  

permutation). Thus X ~ SU(2) x S U ( 3 ) / T  2 since H~ = G(2 ) must project trivially 
onto SU(2) x SU(3). This however is our Case I. 

H~ = Spin (5): By the observation above we may assume that only Gj = SU(2). 
From the table we see that G2 = SU(3) and G3 = Spin (5). Again H~ = Spin (5) 
projects trivially onto SU(2) x SU(3). 

H~ = SU(3): Then we see that G 2 = G 3 = S U ( 3 ) .  Therefore we have again that 
)? ~ SU(2) x S U ( 3 ) / T  2. 

H~ = SU(2): Then dim G = dim , (  + dim H = 14. Therefore we get G2 = SU(2), 
G 3 = S U ( 3 )  and ,~ = SU(2) x SU(2) x S U ( 3 ) / S U ( 2 )  x T 2. If  H__ ! projects trivially 
into G~ + G2 then we are done by our observation. Otherwise, )? is again homeo- 
morphic to SU(2) x S U ( 3 ) / T  2. 

Case III: p = 2 
In this case, H = H~ x HE x T 2 and G = G~ x G 2 • G 3 • G 4 with simple factors 

Hi and G,.. Since rk H < 4, H1 and HE must have rank 1. Thus H1 = / / 2  = SU(2). 
Since r e ( G ) ~  9, at least 3 factors, say Gl, G2 and G3 equal SU(2). Therefore 
G4 = SU(3 )  since dim G = 17. By the observation, H_2~ or H 2 must project nontriv- 
ially into GI + G2. Therefore ,Y - SU(2) x SU(3) x S U ( 3 ) / S U ( 2 )  x T 2 and we are 

back to the previous case. 
Clearly p < 2 as rk H < 4, ~ind we have checked all the possibilities. [] 
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5. First order rigidity 

A famous problem of  Hopf  asks whether there is a metric of  strictly positive 
curvature on S 2 x S 2. More generally, one can ask whether there are metrics of 
positive curvature on any manifold M admitting a metric g of nonnegative 
curvature and rank at least 2. Let us consider a differentiable variation t ~-~ g, of the 
metric g = go- We call g, positive if (M, g,) is complete and has strictly positive 
curvature Kt for all t > 0. We call g, positive of first order if the derivative 

d 
K'(a) ~f d t o  K~ (~) 

is strictly positive for all 2-planes a �9 Kol (0)  [4]. 
If a metric variation is positive of  first order and M is compact then the 

variation is positive. If Ml and M2 are compact Riemannian manifolds without 
Killing fields, then the Riemannian product does not admit any positive variations 
which depend analytically on t [6]. Much less is known if there are Killing fields [7]. 
Notice Remark 2.4 where one can deform the product metric on S 3 x S 3 to a metric 

of  rank 1. 
Let us now consider variations g, positive of first order. Riemannian products 

and symmetric spaces of higher rank do not admit such variations [4], [22]. 
The obstruction to their existence are the embedded flat k-toil  i : Tkc, M. More 
precisely, if g, is a variation positive of first order, then the pulled back metric 
- d c f  . -  Tk g, = t*g t on is also positive of first order�9 Thus ~, is positive. This is impossible 
since T k does not admit a metric of positive curvature. By a similar argument we 
have 

PROPOSITION 5.1. Let M be a compact manifold of nonnegative curvature�9 
Suppose there exists an immersed totally geodesic k-flat i �9 Rk ~ M with k > 1. Then 
M does not admit a variation positive of  first order. 

Proof. Let go be the metric of M. Suppose g, is a variation positive of first order 
�9 . c l e f  . . . 

of go. Then the pulled back vanatlon gt = i*gt is also posmve of  first order. Now 
we can estimate the curvature functions g,  of g, from below. Let # be a 2-plane in 
TR*. Using the formulas in [6, Section 3] and the compactness of  M it is 
straightforward to check that the coefficients of the Taylor expansion around t = 0 
of t ~ g,(#) are bounded from above by a constant independent of  ~. Since 
g,~(#) = K' ( i ,#)  by [22, Lemma 4.1], we obtain 

Kt(6) = t(K'( i ,6)  + tD(6)) > t(6 + t ( - C ) )  
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where  D is the  r e m a i n d e r  t e rm in the T a y l o r  expans ion  and  6 and  C are  pos i t ive  

c o n s t a n t s  i n d e p e n d e n t  o f  8. Since  M is c o m p a c t ,  we have  �89 o < i*gt < 2i*g0 fo r  all 

smal l  t. T h e r e f o r e  gt is a c o m p l e t e  me t r i c  on  R k wi th  pos i t ive  c u r v a t u r e  b o u n d e d  

f r o m  be low.  Th i s  is c lear ly  a c o n t r a d i c t i o n  to the t h e o r e m  o f  M y e r s  [ 10]. []  
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